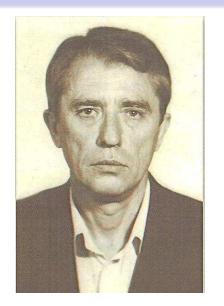


И.П. Мельниченко и геометрическая теория функций комплексного переменного



(1938-2004)

А.К. Бахтин И.П. Мельниченко и геометрическая теория функц

И.П. Мельниченко и геометрическая теория функц

Анапа, сентябрь, 1974 г. на вы на вы

1. Пространство \mathbb{C}^n .

Пусть $\mathbb{N}, \mathbb{R}, \mathbb{C}$ — соответственно множества натуральных, вещественных и комплексных чисел. Пусть $\overline{\mathbb{C}}$ — сфера Римана (расширенная комплексная плоскость). Как известно [1-3], комплексное пространство \mathbb{C}^n является линейным векторным пространством над полем комплексных чисел с эрмитовым скалярным произведением

$$(\mathbb{Z} \cdot \mathbb{W}) = \sum_{k=1}^{n} z_k \overline{W}_k, \tag{1}$$

где
$$\mathbb{Z}=\{z_k\}_{k=1}^n\in\mathbb{C}^n,\ \mathbb{W}=\{w_k\}_{k=1}^n\in\mathbb{C}^n.$$

2. Алгебра \mathbb{C}^n .

Бинарную операцию действующую из $\mathbb{C}^n \times \mathbb{C}^n$ в \mathbb{C}^n

по правилу

$$\mathbb{Z} \cdot \mathbb{W} = \{ \mathbf{z}_k \mathbf{w}_k \}_{k=1}^n, \tag{2}$$

где $\mathbb{Z}=\{z_k\}_{k=1}^n\in\mathbb{C}^n,\,\mathbb{W}=\{w_k\}_{k=1}^n\in\mathbb{C}^n,$ будем называть векторным умножением элементов $\mathbb{C}^n.$

Данная операция превращает \mathbb{C}^n в коммутативную, ассоциативную алгебру [7, 8] с единицей $1 = \underbrace{(1,1,...,1)}_{n-\text{pas}} \in \mathbb{C}^n$.

Обратимыми, относительно так определенной операции

умножения, являются те и только те елементы $\mathbb{Z}=\{z_k\}_{k=1}^n\in\mathbb{C}^n$ у которых $z_k\neq 0$ для всех $k=\overline{1,n}$.

Обратными для таких элементов $\mathbb{Z} \in \mathbb{C}^n$

являются элементы $\mathbb{Z}^{-1}=\{z_k^{-1}\}_{k=1}^n\in\mathbb{C}^n$, так как $\mathbb{Z}\cdot\mathbb{Z}^{-1}=\mathbb{Z}^{-1}\cdot\mathbb{Z}=1$.

Множество Θ всех элементов $a = \{a_k\}_{k=1}^n \in \mathbb{C}^n$, у которых хотя бы одна координата $a_k = 0$, назовем множеством необратимых элементов $a \in \mathbb{C}^n$. Множество Θ является идеалом в алгебре \mathbb{C}^n . При n = 1 равенство (2) задает обычное умножение комплексных чисел.

Хорошо известно (см. напр [7, стр. 138], [8, стр. 345]), что операция умножения (2) позволяет представить \mathbb{C}^n как прямую сумму n экземпляров алгебры комплексных чисел \mathbb{C} . Структура векторного пространства \mathbb{C}^n полностью согласуется со структурой алгебры \mathbb{C}^n .

Дадим несколько определений превращающих алгебру \mathbb{C}^n в алгебру со свойствами аналогичными свойствам алгебры обычных комплексных чисел.

3. Сопряжение.

В алгебре комплексных чисел $\mathbb C$ важную роль имеет понятие комплексно сопряженного числа. Предьявим аналогичный объект в алгебре $\mathbb C^n$.

Каждому элементу $\mathbb{W} = \{w_k\}_{k=1}^n \in \mathbb{C}^n$ поставим

в соответствие векторно – сопряженный элемент $\overline{\mathbb{W}} = \{\overline{w}_k\}_{k=1}^n \in \mathbb{C}^n$, где \overline{w}_k обозначает число комплексно сопряженное w_k в обычном смысле.

Так определенное соответствие задает автоморфизм \mathbb{C}^n , оставляющий неподвижным подпространство $\mathbb{R}^n\subset\mathbb{C}^n$. При n=1 векторно – сопряженное число совпадает с комплексно сопряженным.

4. Модуль (векторный).

В алгебре \mathbb{C} одним из важнейших является понятие модуля комплексного числа. Следующее определение дает аналог этого понятие в \mathbb{C}^n . Пусть $\mathbb{R}^n_+ = R_+ \times R_+ \times \ldots \times R_+$, $R_+ = [0, +\infty)$ (см. [2, стр. 16]).

Векторным модулем произвольного элемента

$$\mathbb{Z}=\{z_k\}_{k=1}^n\in\mathbb{C}^n$$
 будем называть вектор $|\mathbb{Z}|:=\{|z_k|\}_{k=1}^n\in\mathbb{R}_+^n.$

Операция перехода к векторному модулю определяет отображение \mathbb{C}^n в \mathbb{R}^n_+ . Это отображение в комплексном анализе используется, в частности, для получения изображения Реинхарта областей в \mathbb{C}^n (см., например [2, стр. 16]).

Важно, что для произвольного $\mathbb{Z}=\{z_k\}_{k=1}^n\in\mathbb{C}^n,$ справедливо равенство

$$\mathbb{Z} \cdot \overline{\mathbb{Z}} = |\overline{\mathbb{Z}}|^2 = |\mathbb{Z}|^2. \tag{3}$$

При n=1 векторный модуль совпадает с обычным модулем комплексного числа, формула (3) совпадает с аналогичной формулой для комплексной плоскости \mathbb{C} , определяемой с помощью скалярного произведения (1).

5. Векторная норма.

Вектор $\mathbb{X} = \{x_k\}_{k=1}^n \in \mathbb{R}^n$ будем называть

неотрицательным (строго положительным) и писать $\mathbb{X} \geq \mathbb{O}$ ($\mathbb{X} > \mathbb{O}$), если $x_k \geq 0$ для всех $k = \overline{1,n}$ ($x_k > 0$ хотя бы для одного $k = \overline{1,n}$), $\mathbb{O} = \underbrace{(0,0,\ldots 0)}_{n-\text{pas}}$.

Будем говорить, что вектор $\mathbb{X} = \{x_k\}_{k=1}^n \in \mathbb{R}^n$ больше либо

равен (строго больше) вектора $\mathbb{Y} = \{y_k\}_{k=1}^n \in \mathbb{R}^n$, если $\mathbb{X} - \mathbb{Y} > \mathbb{O}$ ($\mathbb{X} - \mathbb{Y} > \mathbb{O}$).

Данные определения при n=1 совпадают с соответствующими определениями на вещественной прямой.

При n>1 ситуация существенно отличается от случая n=1, например, вектор $\mathbb{O}=\underbrace{(0,0,\dots 0)}_{n=1}$ больше либо равен всех

векторов, все координаты которых неположительны и меньше либо равен всех векторов из \mathbb{R}^n_+ . Остальные векторы \mathbb{R}^n у которых координаты разных знаков с вектором \mathbb{O} не сравнимы в смысле этих определений.

Векторное пространство У будем называть векторно нормированным,

если каждому $y \in \mathbb{Y}$ сопоставлен неотрицательный вектор $\|y\| \in \mathbb{R}^n_+, \ n \in \mathbb{N},$ удовлетворяющий условиям:

- 1) $\|y\| \ge \mathbb{O}$, причем $\|y\| = \mathbb{O} \iff y = 0_{\mathbb{Y}}$, $(0_{\mathbb{Y}} \text{нуль пространства } \mathbb{Y})$;
- 2) $\|\gamma y\| = |\gamma|\|y\|, \ \forall y \in \mathbb{Y}, \ \forall \gamma \in \mathbb{C};$
- 3) $||y_1 + y_2|| \le ||y_1|| + ||y_2||, \forall y_1, y_2 \in \mathbb{Y}.$

Аналогично можно ввести понятие векторной метрики. Введенное ранее понятие векторного модуля элемента $\mathbb{Z} \in \mathbb{C}^n$ удовлетворяет последнему определению. Таким образом векторный модуль является векторной нормой в алгебре $\mathbb{C}^n: \|\cdot\| = |\cdot|$. Тогда открытым единичным шаром в алгебре \mathbb{C}^n является единичный открытый поликруг $\|z\| < 1$, $(1 = \underbrace{(1,1,\ldots 1)}_{n-\mathrm{pas}})$, а единичной сферой – n – мерный тор –

 $\mathbb{T}^n=\{\mathbb{Z}\in\mathbb{C}^n:\|\mathbb{Z}\|=1\}.$ Очень важно, что

$$\mathrm{a})\ |\mathbb{Z}_1\cdot\mathbb{Z}_2|=\|\mathbb{Z}_1\cdot\mathbb{Z}_2\|=\|\mathbb{Z}_1\|\|\mathbb{Z}_2\|=|\mathbb{Z}_1||\mathbb{Z}_2|,\ \forall \mathbb{Z}_1,\mathbb{Z}_2\in\mathbb{C}^n;$$

6)
$$|1| = ||1|| = 1$$
, $(1 = (1, 1, ..., 1))$.

При n=1 равенства а) и б) совпадают с аналогичными равенствами на комплексной плоскости. Заметим, что для евклидовой нормы $\|\cdot\|_{\mathcal{E}}$, определяемой скалярным произведением (1) справедливо равенство

$$||1||_{E} = \sqrt{n}$$
.

6. Векторный аргумент $\boldsymbol{a} \in \mathbb{C}^n$.

В дальнейшем вектор (произвольный) пространства (алгебры) \mathbb{C}^n будем называть n — мерным комплексным числом. Таким образом, алгебра \mathbb{C}^n будет называться алгеброй n — мерных комплексных чисел.

Векторным аргументом n – мерного комплексного числа $\mathbb{A}=\{a_k\}_{k=1}^n\in\mathbb{C}^nackslash\Theta$

является \boldsymbol{n} — мерный вещественный вектор, определяемый формулой

$$Arg \, \mathbb{A} = \{ Arg \, a_k \}_{k=1}^n, \tag{4}$$

где $Arg \ a_k$ есть главное значение аргумента, либо то которое вытекает из конкретного смысла задачи в которой фигурирует n — мерное комплексное число $\mathbb{A} \in \mathbb{C}^n$.

7. Представление *n* – мерного комплексного числа в векторно – декартовой форме.

Пусть
$$\mathbb{Z} = \{z_k\}_{k=1}^n \in \mathbb{C}^n$$
. Тогда
$$\mathbb{Z} = \{z_k\}_{k=1}^n = \{Rez_k + iImz_k\}_{k=1}^n = \{Rez_k\}_{k=1}^n + \{iImz_k\}_{k=1}^n = \{Rez_k\}_{k=1}^n + i\{Imz_k\}_{k=1}^n = Re\mathbb{Z} + iIm\mathbb{Z} = X + iY = \{x_k\}_{k=1}^n + i\{y_k\}_{k=1}^n \in \mathbb{R}^n + i\mathbb{R}^n,$$
 где $X = Re\mathbb{Z} = \{Rez_k\}_{k=1}^n = \{x_k\}_{k=1}^n,$ где $X = Re\mathbb{Z} = \{Rez_k\}_{k=1}^n = \{y_k\}_{k=1}^n$. То есть $\mathbb{C}^n = \mathbb{R}^n + i\mathbb{R}^n$.

8. Представление *n* – мерного комплексного числа в векторно – полярной форме.

Используя вышеприведенные определения, получим цепочку равенств:

$$\mathbb{Z} = \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix} = \begin{pmatrix} |z_1|e^{i\alpha_1} \\ |z_2|e^{i\alpha_2} \\ \vdots \\ |z_n|e^{i\alpha_n} \end{pmatrix} = \begin{pmatrix} |z_1| \\ |z_2| \\ \vdots \\ |z_n| \end{pmatrix} \begin{pmatrix} e^{i\alpha_1} \\ e^{i\alpha_2} \\ \vdots \\ e^{i\alpha_n} \end{pmatrix} = \left[\mathbb{Z} | \left[\cos \alpha_1 \\ \cos \alpha_2 \\ \vdots \\ \cos \alpha_n \right] + i \begin{pmatrix} \sin \alpha_1 \\ \sin \alpha_2 \\ \vdots \\ \sin \alpha_n \end{pmatrix} \right] = |\mathbb{Z}| [\cos Arg \, \mathbb{Z} + i \sin Arg \, \mathbb{Z}] = |\mathbb{Z}| e^{iArg \, \mathbb{Z}} = |\mathbb{Z}| \exp iArg \, \mathbb{Z},$$

где

$$\cos \beta = \begin{pmatrix} \cos \beta_1 \\ \cos \beta_2 \\ \vdots \\ \cos \beta_n \end{pmatrix}, \quad \sin \beta = \begin{pmatrix} \sin \beta_1 \\ \sin \beta_2 \\ \vdots \\ \sin \beta_n \end{pmatrix},$$

$$\begin{pmatrix} \exp i\beta_1 \\ \exp i\beta_2 \end{pmatrix}, \quad \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}, \quad \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$$

$$\exp i\beta = \begin{pmatrix} \exp i\beta_1 \\ \exp i\beta_2 \\ \vdots \\ \exp i\beta_n \end{pmatrix}, \quad \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix} \in \mathbb{R}^n, \quad \mathbb{Z} = \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix} \in \mathbb{C}^n.$$

Аналогичным образом определяется отображение $\ln \mathbb{Z}$, $\mathbb{Z} = \{z_k\}_{k=1}^n \in \mathbb{C}^n \setminus \Theta$

$$\ln \mathbb{Z} = \ln |\mathbb{Z}| + iArg \, \mathbb{Z} = \begin{pmatrix} \ln |z_1| + iArg \, z_1 \\ \ln |z_2| + iArg \, z_2 \\ \vdots \\ \ln |z_n| + iArg \, z_n \end{pmatrix}.$$

Более того, для регулярной в областях (B_1, B_2, \ldots, B_n) , $B_k \in \mathbb{C}$, $k = \overline{1,n}$ функции F(z) комплексного переменного определим продолжение этой функции до голоморфного отображения области $\mathbb{B} = B_1 \times B_2 \times \ldots \times B_n$ по следующему правилу

$$\mathbb{F}(\mathbb{W}) = egin{pmatrix} F(W_1) \ F(W_2) \ \dots \ F(W_n) \end{pmatrix}, \quad \mathbb{W} \in \mathbb{B}.$$

9. Компактификация \mathbb{C}^n .

По определению
$$\mathbb{C}^n = \underbrace{(\mathbb{C} \times \mathbb{C} \times \ldots \times \mathbb{C})}_{n-\text{раз}}$$
. Рассмотрим

компактификацию пространства \mathbb{C}^n , далее так называемое пространство теории функций (см., напр [1-3])

$$\overline{\mathbb{C}}^n = \underbrace{(\overline{\mathbb{C}} \times \overline{\mathbb{C}} \times \dots \times \overline{\mathbb{C}})}_{n-\text{раз}}. \text{ Ясно, что } \mathbb{C}^1 = \mathbb{C}, \ \overline{\mathbb{C}}^1 = \overline{\mathbb{C}}.$$

Бесконечными точками $\overline{\mathbb{C}}^n$ являются те точки, у которых хотя бы одна координата бесконечна. Множество всех бесконечных точек имеет комплексную размерность n-1. Топология в $\overline{\mathbb{C}}^n$ вводится как в декартовом произведении топологических пространств. В этой топологии $\overline{\mathbb{C}}^n$ компактно (см. [1-3]).

10. Полицилиндрическая теорема Римана об отображении в $\overline{\mathbb{C}}^n$.

Область $B \subset \overline{\mathbb{C}}$ называется областью гиперболического типа,

если $\partial \boldsymbol{B}$ (граница В) – связное множество, содержащее более одной точки.

Область $\mathbb{B} = \underline{B_1} \times \underline{B_2} \times ... \times \underline{B_n} \subset \overline{\mathbb{C}}^n$, где каждая область $\underline{B_k} \subset \overline{\mathbb{C}}$, $k = \overline{1,n}$ является областью гиперболического типа, будем называть полицилиндрической областью гиперболического типа.

Непосредственно из классической теоремы Римана об отображении односвязной области гиперболического типа на единичный круг (см. [6]) вытекает следующий результат.

Теорема Римана (полицилиндрическая).

Любая полицилиндрическая область $\mathbb{B} \subset \overline{\mathbb{C}}^n$ гиперболического типа биголоморфно эквивалентна единичному поликругу $\mathbb{U}^n = \{ \mathbb{W} \in \mathbb{C}^n : \| \mathbb{W} \| < 1 \}$. Эту эквивалентность реализует семейство биголоморфных отображений, зависящее от $3 \cdot n$ вещественных параметров.

Пусть $\mathbb{B}=B_1\times B_2\times \ldots \times B_n$ – область указанная в теореме Римана, $\mathbb{A}=\{a_k\}_{k=1}^n\in \mathbb{B},\ a_k\in B_k,\ k=\overline{1,n}$ и $w_k=f_k(z_k)$ – голоморфная в B_k функция, однолистно и конформно отображающая область $B_k,\ k=\overline{1,n}$ на единичный круг $|w_k|<1$ так, что $f(a_k)=0,\ f'(a_k)>0$. Тогда биголоморфное

отображение
$$\mathbb{F}_{\mathbb{B}}(\mathbb{Z}) = \begin{pmatrix} f_1(z_1) \\ f_2(z_2) \\ \dots \\ f_n(z_n) \end{pmatrix}, \quad \mathbb{F}'_{\mathbb{B}}(\mathbb{Z}) = \begin{pmatrix} f'_1 \\ f'_2 \\ \dots \\ f'_n \end{pmatrix},$$

удовлетворяет условиям нормировки

$$\mathbb{F}_{\mathbb{B}}(\mathbb{A})=\mathbb{O},\quad \mathbb{F}_{\mathbb{B}}'(\mathbb{A})=egin{pmatrix} f_1'(a_1)\ f_2'(a_2)\ \dots\ f_n'(a_n) \end{pmatrix}>\mathbb{O}$$

и будет единственним таким отображением на единичный поликруг. Итак, в алгебре \mathbb{C}^n норма определена равенством $\|\mathbb{Z}\| := |\mathbb{Z}|$. Метрика (векторная) в \mathbb{C}^n задается обычным образом: $\rho(\mathbb{Z}_1,\mathbb{Z}_2) = \|\mathbb{Z}_1 - \mathbb{Z}_2\|$. Назовем так определенные (векторные) норму и метрику полицилиндрическими. Сходимость по полицилиндрической норме задается соотношением $\mathbb{Z}_p \underset{p\to\infty}{\longrightarrow} 0 \Longleftrightarrow \|\mathbb{Z}_p\| \underset{p\to\infty}{\longrightarrow} \mathbb{O} = \underbrace{(0,0,\ldots 0)}_{n-\mathrm{pas}} \Longleftrightarrow$

$$|z_p^{(k)}| \underset{p \to \infty}{\longrightarrow} 0 \quad \forall k = \overline{1, n}.$$

11. Дифференцируемость.

Рассмотрим область $\mathbb{D} \subset \mathbb{C}^n$ и отображение $\mathbb{F} : \mathbb{D} \longrightarrow \mathbb{C}^m$, $\mathbb{F} = \{f_k(z_1,\ldots,z_n)\}_{k=1}^m$. Пусть $f_k = U^{(k)}(x_1,\ldots,x_n,y_1,\ldots,y_n) + iV^{(k)}(x_1,\ldots,x_n,y_1,\ldots,y_n) -$ вещественно дифференцируемы всюду в области \mathbb{D} при $k = \overline{1,m}, \, n,m \in \mathbb{N}$.

Рассмотрим матрицу Якоби отображения \mathbb{F} , рассматриваемого как дифференцируемое отображение области $\mathbb{D} \subset \mathbb{R}^{2n}$ в \mathbb{R}^{2m} (матрица $2m \times 2n$)

$$\begin{pmatrix}
U_{x_{1}}^{(1)} & \dots & U_{x_{n}}^{(1)} & | & U_{y_{1}}^{(1)} & \dots & U_{y_{n}}^{(1)} \\
\dots & & & | & \dots & \dots & \dots \\
\vdots & \{\mathbb{U}_{\mathbb{X}}\} & \vdots & | & \vdots & \{\mathbb{U}_{\mathbb{Y}}\} & \vdots \\
\dots & & & | & \dots & \dots & \dots \\
U_{x_{1}}^{(m)} & \dots & U_{x_{n}}^{(m)} & | & U_{y_{1}}^{(m)} & \dots & U_{y_{n}}^{(m)} \\
--- & --- & | & --- & \dots & \dots & \dots \\
V_{x_{1}}^{(1)} & \dots & V_{x_{n}}^{(1)} & | & V_{y_{1}}^{(1)} & \dots & V_{y_{n}}^{(1)} \\
\vdots & \{\mathbb{V}_{\mathbb{X}}\} & \vdots & | & \vdots & \{\mathbb{V}_{\mathbb{Y}}\} & \vdots \\
\dots & & & & \dots & \dots & \dots \\
V_{x_{1}}^{(m)} & \dots & V_{x_{n}}^{(m)} & | & V_{y_{1}}^{(m)} & \dots & V_{y_{n}}^{(m)}
\end{pmatrix}, (5)$$

где
$$U_{x_j}^{(k)} = \frac{\partial}{\partial x_i} U_k$$
, $V_{x_j}^{(k)} = \frac{\partial}{\partial x_i} V_k$, $k = \overline{1, m}$, $j = \overline{1, n}$.

Штрихованные линии разбивают матрицу Якоби (5) на четыри прямоугольные матрицы порядка $m \times n$, обозначенные $\mathbb{U}_{\mathbb{X}}$, $\mathbb{U}_{\mathbb{Y}}$, $\mathbb{V}_{\mathbb{X}}$, $\mathbb{V}_{\mathbb{Y}}$, где $\mathbb{F} = Re\mathbb{F} + iIm\mathbb{F} = \mathbb{U} + i\mathbb{V}$, $\mathbb{Z} = Re\mathbb{Z} + iIm\mathbb{Z} = \mathbb{X} + i\mathbb{Y}$.

С учетом сказанного, матрицу (5) можно представить следующим образом

$$\begin{pmatrix} \mathbb{U}_{\mathbb{X}} & \mathbb{U}_{\mathbb{Y}} \\ \mathbb{V}_{\mathbb{X}} & \mathbb{V}_{\mathbb{Y}} \end{pmatrix}.$$

Тогда условия Коши-Римана для отображения **F** можно записать в виде

$$\begin{cases}
\mathbb{U}_{\mathbb{X}} = \mathbb{V}_{\mathbb{Y}}, \\
\mathbb{U}_{\mathbb{Y}} = -\mathbb{V}_{\mathbb{X}}.
\end{cases} (6)$$

С учетом (6) известное определение голоморфного отображения (см. [1-5]) можно представить в следующем виде.

Отображение $\mathbb{F}:\mathbb{D}\longrightarrow\mathbb{C}^m$ вещественно дифференцируемое в

 \mathbb{D} (как отображение из \mathbb{R}^{2n} в \mathbb{R}^{2m}) и удовлетворяющее матричному уравнению (6) всюду в \mathbb{D} будем называть голоморфным в области \mathbb{D} . При $n \in \mathbb{N}$ и m = 1 получаем определение голоморфной функции в области $\mathbb{D} \subset \mathbb{C}^n$. В случае n = 1, $m \in \mathbb{N}$ получаем определение голоморфной кривой.

Как известно [1-3] голоморфное отображение $\mathbb{F}: \mathbb{D} \longrightarrow \mathbb{C}^m$, $\mathbb{D} \subset \mathbb{C}^n$ называется биголоморфным, если оно имеет обратное отображение, голоморфное в области $\mathbb{F}(\mathbb{D})$.

12. Приложения.

В связи с полицилиндрической теоремой Римана об отображении рассмотрим полицилиндрический аналог известного класса **S** из теории однолистных функций (см., напр. [6]).

Классом $\mathbb{S}^{(n)}$

назовем совокупность всех биголоморфных отображений единичного поликруга $\mathbb{U}^n=\{\mathbb{Z}\in\mathbb{C}^n:\|\mathbb{Z}\|<1\}$ вида

$$\mathbb{F}(\mathbb{Z}) = \begin{pmatrix} f_1(z_1) \\ f_2(z_2) \\ \dots \\ f_n(z_n) \end{pmatrix},$$
где $f_k \in S, \ k = \overline{1,n}, \ \mathbb{Z} = \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix} \in \mathbb{U}^n.$

Ясно, что для $\mathbb{Z} \in \overline{\mathbb{U}}^n(r) := \{\|\mathbb{Z}\| \le r < 1\}, r = \{r_k\}_{k=1}^n, 0 < r_k < 1, k = \overline{1,n}$ равномерно и абсолютно сходится ряд

$$\mathbb{F}(\mathbb{Z}) = \sum_{k=1}^{\infty} \mathbb{A}_k \mathbb{Z}^k = \sum \begin{pmatrix} a_k^{(1)} \\ a_k^{(2)} \\ \vdots \\ a_k^{(n)} \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix}^k = \begin{pmatrix} \sum a_k^{(1)} z_1^k \\ \sum a_k^{(2)} z_2^k \\ \vdots \\ \sum a_k^{(n)} z_n^k \end{pmatrix} = \begin{pmatrix} f_1(z_1) \\ f_2(z_2) \\ \vdots \\ f_n(z_n) \end{pmatrix}.$$

Теорема 1.

Для произвольного отображения $\mathbb{F} \in \mathbb{S}^{(n)}$ справедливо неравенство

$$\frac{\|\mathbb{Z}\|}{(1+\|\mathbb{Z}\|)^2} \leq \|\mathbb{F}(\mathbb{Z})\| \leq \frac{\|\mathbb{Z}\|}{(1-\|\mathbb{Z}\|)^2}\,,$$

где
$$\|\mathbb{Z}\| = r = \{|z_k|\}_{k=1}^n = \{|r_k|\} \in \mathbb{R}_+^n, \quad 0 \le r_k < 1, \quad k = \overline{1,n}.$$

Теорема 2.

Для произвольного отображения $\mathbb{F} \in \mathbb{S}^{(n)}$ справедливо неравенство

$$\frac{\|1 - \mathbb{Z}\|}{(1 + \|\mathbb{Z}\|)^3} \le \|\mathbb{F}'(\mathbb{Z})\| \le \frac{\|1 + \mathbb{Z}\|}{(1 - \|\mathbb{Z}\|)^3},$$

где
$$\|\mathbb{Z}\| = r = \{|z_k|\}_{k=1}^n = \{|r_k|\} \in \mathbb{R}_+^n, \quad 0 \le r_k < 1, \quad k = \overline{1, n}.$$

Литература

- 1. Шабат Б. В. Введение в комплексный анализ, Ч. І. М.:«Наука», 1976. 320 с.
- 2. Шабат Б. В. Введение в комплексный анализ, Ч. II. М.:«Наука», 1976. 400 с.
- 3. Фукс Б. В. Введение в теорию аналитических функций многих комплексных переменных, Физматгиз, 1962. 420 с.
- 4. Фукс Б. В. Специальные главы теории аналитических функций многих комплексных переменных, Физматгиз, 1963. 428 с.
- 5. Чирка Е. М. Комплексные аналитические множества. М.:«Наука», 1985. 272 с.

- 6. Голузин Г. М. Геометрическая теория функций комплексного переменного. М: «Наука», 1966.-628 с.
- 7. Кантор И. Л., Солодовников А. С. Гиперкомплексные числа. М.:«Наука», 1973. 143 с.
- 8. Б. Л. ван дер ВАРДЕН. Алгебра М.:«Наука», 1976. 648 с.
- 9. Шилов Г. Е. Математический анализ. Конечномерные линейные пространства, М.:«Наука». 1969. 432 с.
- 10. Пешкичев Ю. А. Многомерный градиент и квазиконформные отображения // Вопросы метрической теории отображений и ее применение. Киев: «Наукова думка», 1978. с. 99 109.
- 11. Рудин У. Функциональный анализ, Изд. "Мир Москва. 1975. 449 с.
- 12. Бахтин А.К. Обобщение некоторых результатов теории однолистных функций на многомерные комплексные пространства// Доп. НАН України. 2011. № 3. С. 7 11.